3.4 Index-Sequential Film 101

1. The address of the prime data track to which the entry refers.
2. The highest key of a record in the prime data track.

3. The highest key of a logical record in that data track, including records in the
overflow areas (i.e., it:is the highest key of an overflow record;’if there were
one or more, associated with that track).

4. The address of a record with the lowest key in the overflow area associated
with that track (the address of the first record in the overflow chain).

Items 1 and 2 make up the normal track index entry and items 3 and 4 make up the
overflow track index entry. If there were no overflow from a given track, items 2
and 3 would contain the same key value and item 4 would be set to a null value. If
more than one record were required to be stored in an overflow area, these records
will be chained so they can be reached from the first track overflow record. The
structure of these track index entries for the cylinder is shown in Figure 3.13.

The address of the prime track entry in the normal track index does not change,
nor does the highest key value of the logical block. The highest key value entry in
the prime data track and the address of the first overflow record changes when a new
record inserted in the prime data track causes an existing record to be bumped into
the overflow area. (This is illustrated in Figure 3.14b). The last digit in the pointer
refers to the record number on the track.

Figure 3.13 Typical cylinder organization.

Normal track index entry Overflow track index entry
Highest key value | Address Highest key value Address
on the prime date | of the of this logical of the
track (changes as track block (changes only first
more records are (T) when the file is overflow
l inserted) ' reorganized) record ‘

¥ v _
} index
rTml index 4] Todw“ J F ¢ J SZCkTQ

o o) T B—
o s o J m—
S o | coamn m—

IANGALORE

: J 575 CO1.
N[1 [1L Outlow N\

102 Chapter 3 File Organization

L] " ‘
Figure 3.14 Structure of an index-sequential file.

Master l sssl ooozo_l l 797| 00030 I oo [:I:,
index
00000 . ‘

.
. L]
Cylinder
o [wfom] [ww] -

00030 .
*
Normal ’ Overflow Normal Overflow
Track [molozom] Lsnol *T 615]02020] 624 | 02100 |
index i
02000 Highest key Highest key of
. — of data in record in the
prime area same logical
area
Prime
data 611 | dara | 612 | daua | [ote| ama | ..,
area
02020
Overflow -
we [on] wml] [w]] L la] (T]
ol [am | o] wm | L]
02100
(a)

wr [Blws] [m@o] ...
00000 L]
00030 .
L]

;Ionnal Overflow Normal Overflow
= [olme] [w]] pfales) el
02000 Highest key Highest key of
of data in record in the
prime area same logical
area
phivi [611\] m? Lmz] data l L‘ml'dm] .o - dots. ,'
e 02020 ' '
Overfl

Sl el ml=] —o@[=] [@r=h

3.4 Index-Sequential Film 103

The track index entries are used by the file system to determine the track address
of a given logical record. The cylinder’s overflow area is used to store records that
are forced off the prime data track when new records are inserted. The records in the
‘overflow area are unblocked and stored in the order of their insertions or placement
rather than, in key sequence. The logical sequence of records is maintained by pre-
fixing a sequence link to each logical record. The access to records in an overflow
area is via these links and therefore inefficient.

A file with records in overflow areas and with deleted records needs reorgani-
zation. (It has to be recreated.) Deleted records are not physically deleted, but
marked as having been deleted. The space and the contents are physically undis-
turbed. Such marked records are retrieved by the file manager, and it is up to the
application program to ascertain their status. Normally, on subsequent insertions, a
marked record is not forced off the prime area to the overflow area. The only excep-
tion is when a record having the highest key value in a cylinder is marked as deleted.
When such a record is forced off the prime data track due to subsequent insertions,
it is written in the overflow area. Additional independent overflow areas are used
when a cylinder overflow area becomes full.

The structure of an index-sequential file, including the index, prime data, and
overflow areas is shown in Figure 3.14. The address is given as the cylinder address
followed by the track address, both being two digits in this example. The final digit
represents a record number. The index area of the file contains a cylinder index
(shown in the figure as being stored in record 0 of cylinder 00, track 03) and may
contain a master index (shown on cylinder 00, track 00). It does not contain the track
index (which is stored on the cylinders themselves). Each cylinder in the prime data
area has an entry in the cylinder index. The entry contains the address of the track
index in that cylinder and the highest key stored on that cylinder. The cylinder index
is used by the file system to determine the cylinder on which a record might or should
be and the address of the track index for the cylinder.

An index-sequential file may be updated in sequential or random mode. In se-
quential mode, the insertion of new records in their proper sequence (update type
U,) requires the creation of a new file, so it is performed only if a very large number
of new records are being added. Under certain file managers new records may be
added to the end of the file in sequential mode only if there is enough space in the
prime data areas, not the overflow area;. In random mode all types of updates can
be performed on an existing file.

Retrieval from an index-sequential file may be sequential or random. In sequen-
tial mode, it may be possible to specify both a start and an end point. This is very
useful for processing grouped data. The records, including those in the overflow area,
are available in their logical sequence. All pointers between the overflow records in
a sequence are handled automatically by the FM to retain the logical sequence. In
random processing mode any arbitrary record may be accessed. Skip-sequential pro-
cessing, wherein the records not needed for processing are skipped-over, is also made
very easy and efficient. For low hit rates, whole tracks and cylinders may be skipped.
In a sequential file in which keys are stored separately from data, it is possible to
skip records but every key must be read.

Number of Disk Accesses

Let us now consider the number of disk accesses required when searching for a given
record. We again assume uniform distribution of records within blocks, tracks, and

104

Chapter 3 File Organizaﬁon

'_5},5.4.5

cylinders. Let there be L levels of indexing and the size of the index at a level, for
instance j, be I blocks. Assume that each block is on a different rack and access to
a block consequently requires one disk access. Then, at each level, as we have as-
sumed uniform distribution, we expect on average that half the number of index
blocks will be accessed (in a sequential search). Therefore, the average total number
of index blocks accessed is:
L I
5[]
=112

In addition, we need to access the block on which the actual record resides. If the
record is in a prime area, only one bleck has to be accessed; otherwise number O
(=0) overflow blocks are also accessed. As such, the total number of blocks accessed
on average is:

L . .
3 L + [1 if data on prime area
=112 0 if data not on prime area

VSAM

Figure 3.13

The major disadvantage of the index-sequential organization is that as the file grows,
performance deteriorates rapidly because of overflows and consequently there arises
the need for periodic reorganization. Reorganization is an expensive process and the
file becomes unavailable during reorganization. The virtual storage access method
(VSAM) is IBM’s advanced version of the index-sequential organization that avoids
these disadvantages. The system is immune to the characteristics of the storage me-

Index and data blocks of a VSAM control interval.

o (o] [« o

Index

| 1sup, || 24ups | L[2eing | [T ST

blocks

15|| 037

039 08| D

D:fos2 07 0;3] o[T

» - O

® RO O =T

Dy[1e3 141] o[

Dy [157] [|

D,lZBS w | i

Ds[267 29 | l]
|

3.5 Direct File 105

Example 3.7 Suppose the records to be added have the key values of 55 and 60

3.5

dium, which could be considered as a pool of blocks. The VSAM files are made up
of two components: the index and data. However, unlike index-sequential organiza-
tion, overflows are handled in a different manner. The VSAM index and data are
assigned to distinct blocks of virtual storage called a control interval. To allow for
growth, each time a data block overflows it is divided into two blocks and appropri-
ate changes are made to the indexes to reflect this division.

Figure 3.15 shows the structure of a control interval of a VSAM file. The index
block and the data blocks are included in a control interval. We can consider the
control interval to serve the same purpose that the track does in the index-sequential
organization. Higher level indices also exist in VSAM; however, these are not shown
in Figure 3.15. The control interval contains a number of empty index and data
blocks, which are used when a data block overflows. The index entry I, indicates
that the highest key value of a record in data block D, is 73; the pointer to data block
D, is indicated by | D,. The method of handling overflow is illustrated in Example
3.7.

~/

odse MANGALORE

records will logically be added into data block D,. However, since {¥{d% 575 001,
a block size of 4, only one record can be added without an overflow, Thy
solution used in VSAM is to split the logical block D, into two blocks S‘
us say D, and D;. The records are inserted in the correct logical sequence®
Furthermore, the index entry I, is divided into two index entries as shown
below:

In VSAM, a number of control intervals are grouped together into a contrel
area. An index exists for each control area. A control interval can be viewed as a
track and a control area as a cylinder of the index-sequential organization.

Each control interval also contains control information that can be used in con-
junction with routines provided in VSAM to allow retrieval of records, using either
the key value or the relative position of a record. The relative position can either be
the relative position in bytes from the start of the file or, in the case of fixed-length
records, the relative number of the record.

In the index-sequential file organization considered in the previous sections, the map-
ping from the search-key value to the storage location is via index entries. In direct

108

Chapter 3 File Organization

middle region. The start and end digits are concatenated and the concatenated
string of digits is added to the middle region digits. This new number, mod s,
where s is the upper limit of the hash function, gives the bucket address:

T T

123456 123456789012 654321

For the above key (converted to integer value if required) the end folding gives
the two values to be added as: 12345_6654321 and 123456789012.

3. Square all or part of the key and take a part from the result. The whole or
some defined part of the key is squared and a number of digits are selected
from the square as being part of the hash result. A variation is the
multiplicative scheme where one part of the key is multiplied by the remaining
part and a number of digits are selected from the result.

4. Division. As stated in the beginning of this section, the key can be divided by
a number, usually a prime, and the remainder is taken as the bucket address. A
simple check with, for instance, a divisor of 100 tells us that the last two digits.
of any key will remain unchanged. In applications where keys may be in some
multiples, this would produce a poor result. Therefore, division by a prime
number is recommended. For many applications, division by odd ‘numbers that
have no divisors less than about 19 gives satisfactory results.

We can conclude from the above discussion that a number o« possible methods -
for generating a hash function exist. In general it has been found that hash functions
using division or multiplication perform quite well under most conditions.

Let us now consider the retrieve, insert, and delete operations using hashing to
locate our records. Let K be the set of keys and A be the set of bucket addresses so
that the hashing function h is a function from K to A. The hash value h(k) is the
address of the bucket that contains the <key, address> pair for the record with key
k. Here we assume the size of the bucket is chosen such that overflow would not
occur. A special dummy record is always assumed to be the last record in each
bucket and it is used in the search to indicate a failure. The bucket with address h(k)
is examined for the <k, address> pair. If there is no match, the record with key k
does not exist. If the operation was either a simple retrieval or a deletion, this results

in a notfound message (or error condition). For insertions, the <k, address> pair is

inserted in this bucket. The record is, of course, inserted in the file at the location
given by the address. If the <k, address> pair exists, then for an insertion this would
be an attempt to insert a duplicate record (which may or may not be permitted in the
application). In the case of a deletion, we would delete the actual record as well as
the bucket entry. Algorithm 3.3 specifies the sequence of steps.

As mentioned earlier, we require that the hash function uniformly distribute the
keys in the buckets. This seems to be a reasonable approach until we examine certain
details more closely. Although we may know the range of key values, do we also
know their distribution characteristics? Note that not all key values are likely to
occur. Different distributions require different hash functions to satisfy the uniformity
requirement. The hash value is also required to lie within the range of addresses for
the buckets, i.e., this range is prespecified. These considerations preclude any
changes to the hash function once it has been implemented. Over a volatile file we
can choose our range of addresses, A, to be large, but we waste valuable space. If

3.5 Direct File _ 109

Algorithm o
3.3

m.rer; womﬂ in data block ar MSERTABBR
insert <SEARCHKEY INSBRTADDR> p:nr in lmcket

110 Chapter 3 File Organization

A is too small, the buckets will be large, containing a larger proportion of key val-
ues, and the performance will degrade. File reorganization is an expensive proposi-
tion. What we want is to be able to modify the hash function as and when required.
There are a number of techniques to do this, referred to as dynamic hashing. We
look at a simple technique called extendable hashing.

3.5.1 Extendable Hashing

Extendable hashing handles file growth and shrinkage by splitting or coalescing
buckets, i.e., the number of buckets or the bucket address range changes with the
file. Since the hash function, once implemented, can only generate values in some
predefined range, the extendable hashing scheme requires that the hash function gen-
erates values over a very large range. Instead of using these values as addresses to
buckets, some variable number of bits from these values are used as a key for entries
in a bucket address table (Figure 3.18). In other words, another level of indirection
is introduced. The entries in the bucket address table (BAT) are <length (of key),
key, bucket address> triplets. :

Let the hash function generate an a bit long value, b;b, . . . b,. A number of
high order bits are used as a pseudosearch key into the bucket address table. The
number of bits to be used for each match is determined from the entries in the BAT

it table. Each key in the BAT table is of different length and the length is specified by

L the corresponding entry in the length field. For a given entry in the BAT table, if the
o value of the length field is p(p < a), the p high order bit sequence b;b; . . . b, of
.; T the hash function generated value becomes the search key and is matched against the
BT TR R R TR I key entry in the BAT table. A match gives the bucket address where the required
L e , search key can be found.

Insertion

When a record is inserted, we follow the same procedure as in the simple hashing
scheme. The only difference is when a bucket is full. We refer to it as the original
bucket (with bucket address given by original_address). A new bucket is created; let
us call it the new bucket (with bucket address given by new_address). Let us assume
that the key was p bits long. Now since we have two buckets where there was one
before, the length value has to be increased by one. Thus, the old key bjb, . . . b,
is replaced by the new keys bib, . . . b,b,., with the bit b, , being either 0 or 1.
The key for the old bucket becomes bib, . . . b,0 and for the new bucket bib, . . .
b,1. We divide the entries from the original bucket into the original and new buck-
ets. In this manner, all keys with their high order bits equal to b;b, . . . b,0 are
placed in the original bucket and all keys with their high order bits equal to b;b,
. . . byl are placed in the new bucket. We modify the BAT entry <p, bib, . . . b,
original_address> for original bucket to become <p + 1, b;b, . . . b,0, original_

Figure 3.18 Using extendable hashing.

Key Hash abit Search Bucket; Search R
; > ecord
value function value BAT | ™ address Bucket; - > address

